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Aided INS
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To limit the drift, an 

INS is usually aided 

by other sensors that 

provide direct 

measurements of the 

integrated quantities. 

Examples of aiding 

sensors:
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INS/GNSS characteristics

4

Characteristics INS GNSS

Accuracy of 

navigational solution

Good short term 

accuracy which 

deteriorates with time

Good long term 

accuracy but noisy in 

short term

Initial conditions Initial alignment Not required

Attitude information Available Typically not available

Sensitive to gravity Yes No

Self-contained Yes No

Jamming immunity High No

Output data rate High Low
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Architecture of integrated system

5

GNSS INS

Estimation/Fusion

Integrated navigation solution

Correction
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Types of INS/GNSS Integration

6

Different forms of INS/GNSS integration architectures 

have been proposed to attain maximum advantage 

depending upon the type of use and the degree of 

simplicity versus robustness. The three main integration 

architectures are: 

1. Loosely coupled. 

2. Tightly coupled. 

3. Ultra-tightly or deeply coupled.
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Loosely Coupled INS/GNSS 

Integration
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GNSS signal 

receiver

GNSS 

Kalman filter

Inertial Sensors Mechanization

Trajectory 

fusion
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Tightly Coupled INS/GNSS 

Integration
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GNSS signal 

receiver

Correlation & 

Tracking Loops

Inertial Sensors Mechanization

Optimal 

Estimator
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Ultra-Tightly Coupled 

INS/GNSS Integration
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GNSS signal 

receiver
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Tracking Loops
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INS/GNSS Fusion Algorithm
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There are several algorithms for optimal fusion of GNSS 

and INS data, the major ones being various forms of 

Kalman filter (KF), particle filter (PF) and artificial

intelligence (AI). Traditionally, Kalman filtering has been 

the method of choice for fusing navigational information 

from various sources. It is an optimal recursive algorithm 

(Maybeck 1979) which processes all of the available 

measurements, regardless of their precision, to optimally 

estimate the current value of the state of interest and, 

importantly, also furnishes the uncertainty of its estimate. 
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The INS and the aiding sensors usually have 

complementary characteristics. To merge data from 

sensors many different methods can be applied. One of 

the most robust approach is Kalman filter. Direct 

combination of measurements from two or more sensors 

in Kalman filter complicates its structure and increses

state vector. To avoid this most often the error state 

Kalman filter is used. The differences of all redundant 

information serve as its measurements. This can be done 

by running navigation equations on the IMU-data, and 

compare the outputs with the corresponding aiding 

sensors.

11
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Kalman filter

12

Probably the most common optimal filtering technique is 

that developed by Kalman (1960) for estimating the state 

of a linear system. Kalman filter can stated as follow: 

Given our knowledge of the behavior of the system, and 

given our measurements, what is the best estimate of 

position and velocity?  



/39

Institute of Information and Communication Technologies 

Bulgarian Academy of Sciences

University of Pavia March 2017 13

State vector

Transition matrix

Control matrix (i.e., mapping control to state 

variables). 

Control vector

Gaussian white noise with process variance 

matrix (i.e., error due to process). Q :

Measurement variables. 

Measurement matrix (i.e., mapping 

measurements onto state). 
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Measurement noise with Measurement 

variance matrix (i.e., error from 

measurements):

P : State variance matrix (i.e., error of 

estimation). 

K : Kalman gain. 

Linear description saves Gaussian 

distribution of state vector and measurement 

vector. Such type of system is called Gauss-

Markovian system.
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Solution

15
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Extended Kalman Filter

16

In real life very small number of systems can be 

regarded linear. Usually they are non-linear, non-

Gaussian, or the noise is non-additive. INS are typical 

examle of non-linear system. Extended Kalman filter is 

proposed to deal with non-linear systems. If even only 

one from the equations below is non-linear the system is 

regarded non-linear. The general desription looks like:
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EKF

17

In the case of INS, the noise can be regarded additive 

Gaussian:

The solution of this system can be found appling EKF. 

Often EKF is called suboptimal (Kalman filter is optimal 

for linear systems). This is elegant euphemism to avoid 

sayng non-optimal. 
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EKF

18

The main difference between Kalman and extended 

Kalman filters is in the transition matrix. In the case of 

EKF transition matrix is approximated by Jacobian of 

transition matrix F (from Taylor series).
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EKF

19

Prediction step
1. State vector:

2. Covariance matrix of state vector

Here 
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EKF

20

Update step
1. Innovation:

2. Covariance innovation matrix

3. Gain

4. State vector

5.Covariance matrix of state vector
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"Unscented“ Kalman filter (UKF)

21

A set of discretely sampled 

point are used to 

parametrise mean and 

covariance of 

distributions, avoiding 

linearization step. This 

approach is not restricted 

to assuming that the 

distributions of noise 

sources are Gaussian.
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UKF

22

Initialization step

Sigma points
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UKF

23

Time Update
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UKF

24

Measurement 

Update
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Interactive Multiple Model - IMM

25

IMM algorithm models complicated non-linear system 

behaviour with more than one model.
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IMM

26
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IMM

27
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Interlaced” Extended Kalman

Filter – IEKF

28

The fundamental idea of the IEKF is to linearise

nonlinear system by means of an appropriate partition 

of the state space variables. Let assume we succeed 

separate p parts. We could start p parallel KF 

implementations, each one devoted to estimate only a 

subset of the state variable, while considering the 

remaining parts as deterministic time varying 

parameters. 
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IEKF

29
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IEKF

30

i = 1,2
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Another aided systems for 

attitude determination

37

   
Earth Horizon Sensor Sun Sensor Star Tracker 
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Sensor Accuracies Comments

IMU Drift 0.0003-1 deg/h

0.001 deg/h nominal

Requires updates

Star sensor 1 arcsec-1 arcmin

0.0003-0.001 deg

2 axis for single star

Multiple stars for map

Sun sensor 0.005-3 deg

0.01 deg nominal

Eclipse

Earth sensor

GEO

LEO

<0.1-0.25 deg

0.1-1 deg

2 axis

Magnetometer 0.5-3 deg <6000 km

Difficult for high i

Attitude determination
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Questions?


